
PHYS 110A - HW #7
Solutions by David Pace
Any referenced equations are from Griffiths

[1.] Problem 4.11 from Griffiths

A cylinder of length L and radius a has a permanent polarization parallel to its axis. Find
the bound charge. Sketch the electric field for the following cases: (i) L � a, (ii) L � a,
and (iii) L ≈ a.

Figure 1: Diagram of Problem 4.11

Bound Charge
There are two types of bound charge, surface and volume. These are given by, respec-
tively,

σb ≡ ~P · n̂ ρb ≡ −~∇ · ~P

There are three surfaces on which to calculate σb; there are two circular ends and the
cylindrical surface of length L. Let one of the circular faces be at position z = 0 and
the other at z = L. The polarization is constant, ~P = P ẑ. Each surface has a different
normal vector, n̂.

Circular surface at z = 0 → σb = P ẑ · (−ẑ) = −P

Circular surface at z = L → σb = P ẑ · ẑ = P

Cylindrical surface → σb = P ẑ · ŝ = 0

The volume bound charge,
ρb = −~∇ · P ẑ = 0
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Electric Field Sketches
Sketches of the electric field for the various geometries are given below. To make such
a drawing consider the polarization vector as a representative of where the positive
and negative charge resides. The negative charges are found at the base of this vector
and the positive charges are what it points toward. Note that the sketches below
represent only the electric fields; inside the cylinder there is a polarization vector that
points opposite the arrows I have drawn.

Also, the sketches are represented as cross sections, so the cylinder looks like a rect-
angle. The radius a is half of the vertical length of the rectangle.

Figure 2: Electric field for L� a

Figure 3: Electric field for L� a. Notice that the electric is uniform inside the cylinder.
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Figure 4: Electric field for L ≈ a

[2.] Problem 4.18 from Griffiths

Reference Griffths figure 4.24 for the original diagram. A parallel plate capacitor is filled by
two slabs of linear dielectric. Each dielectric has a thickness a, making the total separation
of the capacitor plates 2a. Let slab 1 have a dielectric constant of 2 (i.e. εr1 = 2) and slab 2
has a dielectric constant of 1.5 (εr2 = 1.5). The free charge densities on the capacitor plates
(as drawn in Griffiths) are σf = +σ on the plate near slab 1 and σf = −σ on the plate nearer
slab 2.

(a) Find the electric displacement in each slab.

(b) Find the electric field in each slab.

(c) Find the polarization ineach slab.

(d) Find the potential difference between the plates.

(e) Determine the location and amount of any bound charge.

(f) Having described all of the free and bound charge recalculate the electric field in
each slab. Make sure it agrees with the answer you found earlier.

Figure 5 represents the capacitor in this problem. It is drawn vertically so that I can refer-
ence left and right hand sides throughout the solution. This should make applications of
Gauss’ Law easier to follow. You also see the orientation of the z-axis and the directions on
the normal vectors from the slabs.

(a) Electric Displacement

The electric displacement may be found using the appropriate form of Gauss’ Law.∮
~D · d~a = Qf,enc Eq. 4.23
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Figure 5: Diagram of Problem 4.18. Here it is drawn vertically to distinguish left and right sides.

where Qf,enc is the free charge enclosed within the surface of the integral.
The procedure is the same as that used earlier in the quarter for finding the electric
field inside a parallel plate capacitor (if you want to review, see Griffiths, example 2.4
on page 73). Beginning with the plate of σf = +σ we can draw a cylindrical Guassian
surface across the boundary and see that,

~D =
σ

2
ẑ

This is the contribution to ~D only from the σb = +σ plate. The σb = −σ makes a
contribution of similar amplitude in the same direction, therefore,

~D1 = ~D2 = σẑ

(b) Electric Field
Once we have solved for the electric displacement in an object it is possible to find the
electric field using,

~D = ε ~E Eq. 4.32

where ε ≡ εo(1 + χe) (Eq. 4.33). The problem gives us the dielectric constants of
each slab; this value is εr = 1 + χe. While the electric displacement was constant
throughout the interior of the capacitor the electric field depends on the dielectric
materials present. Recall, the dielectric will polarize according to the strength of the
electric field and this will in turn affect ~E.

~E1 =
~D1

εr1εo

=
σ

2εo
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~E2 =
~D2

εr2εo

=
σ

1.5εo

=
2σ

3εo

(c) Polarization

~P = εoχe
~E Eq. 4.30

and from part (b) we know χe = εr − 1.

~P1 = εo(2− 1)
σ

2εo

ẑ =
σ

2
ẑ

~P2 = εo(1.5− 1)
2σ

3εo

ẑ =
σ

3
ẑ

(d) Potential Between the Plates

The electric field we have found is the total field, i.e. it accounts for the dielectrics and
therefore the potential between the plates is given by the usual line integral expres-
sion,

V = −
∫

~E · d~l

Vplates = −
∫ 0

a

E1dz −
∫ a

2a

E2dz

= − σ

2εo

z

∣∣∣∣0
a

− 2σ

3εo

z

∣∣∣∣a
2a

= − σ

2εo

(0− a)− 2σ

3εo

(a− 2a)

=
aσ

2εo

+
2aσ

3εo

=
7aσ

6εo

(e) Bound Charge

Volume bound charge,
ρb1 = −~∇ · σ

2
ẑ = 0

ρb2 = −~∇ · σ
3
ẑ = 0

The surface charge must be calculated at all surfaces the electric fields pass through,
this is why we don’t worry about the outside edges of the slabs.

at z = 0 σb1 =
σ

2
ẑ · −ẑ = −σ

2

at z = a σb1 =
σ

2
ẑ · ẑ =

σ

2

also at z = a σb2 =
σ

3
ẑ · −ẑ = −σ

3

at z = 2a σb2 =
σ

3
ẑ · ẑ =

σ

3
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(f) Determine Electric Fields from Charge

If we consider all of the surface charge, bound and free, then the electric field between
the plates is given by,

~E =
σ

εo

where σ is the total charge density of the surfaces and there is no dependence on
the dielectrics because we have accounted for them in computing the bound charge
densities.

Find the total charge density on each side of the dielectric. For slab 1,

σleft = σ − σ

2
=

σ

2

σright =
σ

2
− σ

3
+

σ

3
− σ = −σ

2

Slab 1 has a charge density σ
2

and the field is then,

~E1 =
σ

2εo

ẑ

where the direction is based on the orientation of the plates and the location of the
positive charge.

For slab 2,

σleft = σ − σ

2
+

σ

2
− σ

3
=

2σ

3

σright =
σ

3
− σ = −2σ

3

and then this electric field follows,

~E2 =
2σ

3εo

ẑ

Both solutions match the ones we found earlier.

[3.] Problem 4.24 from Griffiths

A neutral conducting sphere of radius a is surrounded by a dielectric shell with dielectric
constant εr. The total radius of the dielectric is b. This entire object is then placed in a
uniform background electric field of value ~Eo. Find the electric field inside the dielectric
shell.

We are correct in assuming that finding the electric field right away is difficult. Techniques
used previously to find the potential at all points in space still apply here, however, and
then the electric field can be computed from that. This is a boundary value problem so we
start by writing out the boundary conditions. Since the sphere is a conductor we know
the potential is constant throughout it. There is a background electric field so the potential
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cannot be set to zero at infinity. Setting the potential of the conducting shell to zero is the
first step in our solution.

Vdi = Potential within dielectric Vout = Potential outside of dielectric

Boundary Conditions

(i) V (r ≤ a, θ) = 0 → Vdi(a, θ) = 0 Potentials must be equal at boundaries

(ii) Vdi(b, θ) = Vout(b, θ) Same reasoning as above

(iii) εout
∂Vout

∂n
− εin

∂Vin

∂n
= −σf Eq. 4.41

εout
∂Vout

∂r
− εdi

∂Vdi

∂r
= 0 For our problem

εo
∂Vout

∂r
= εrεo

∂Vdi

∂r

∂Vout

∂r
= εr

∂Vdi

∂r
At r = b

(iv) Vout(r →∞, θ) = −Eor cos θ

Since there is no free charge in the dielectric we may treat the potential as a solution to
Laplace’s equation just as we did with conductors previously (review Griffiths p. 186 for
the explanation). Now this problem is a separation of variables and the general solutions
for the potentials are,

Vdi(r, θ) =
∞∑
l=0

(
Alr

l +
Bl

rl+1

)
Pl(cos θ)

Vout(r, θ) = −Eor cos θ +
∞∑
l=0

Cl

rl+1
Pl(cos θ)

For the dielectric we must keep both terms because it does not contain the r = 0 or the
r = ∞ positions that usually set one of them to zero. The outside potential is given in
terms of the constant Cl because these are not necessarily the same as the Bl terms found
in the dielectric expression. We must begin with generic variables and let the mathematics
sort out their values. The Eor cos θ term represents the background field (accounting for
condition (iv)).

From (i),

Vdi(a, θ) = 0 =
∞∑
l=0

(
Ala

l +
Bl

al+1

)
Pl(cos θ)
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None of the Legendre polynomials are zero so for each value of l the factor in parenthese
must be zero.

Ala
l +

Bl

al+1
= 0

Bl = −Ala
2l+1

From (ii),
∞∑
l=0

(
Alb

l +
Bl

bl+1

)
Pl(cos θ) = −Eob cos θ +

∞∑
l=0

Cl

bl+1
Pl(cos θ)

Equate like terms of the Legendre polynomials (P1(cos θ) = cos θ).

Alb
l +

Bl

bl+1
=

Cl

bl+1
for l 6= 1

A1b +
B1

b2
= −Eob +

C1

b2
for l = 1

The l 6= 1 case, use the B1 substitution found above,

Alb
l +
−Ala

2l+1

bl+1
=

Cl

bl+1

Cl = Al

[
b2l+1 − a2l+1

]
The l = 1 case,

A1b−
A1a

3

b2
= −Eob +

C1

b2

C1 = A1(b
3 − a3) + Eob

3

From (iii),

εr
∂Vdi

∂r

∣∣∣∣
r=b

= εr

∞∑
l=0

(
lAlr

l−1 +
−(l + 1)Bl

rl+2

)
Pl(cos θ)

∣∣∣∣∣
r=b

= εr

∞∑
l=0

(
lAlb

l−1 +
−(l + 1)Bl

bl+2

)
Pl(cos θ)

∂Vout

∂r

∣∣∣∣
r=b

= −EoP1(cos θ) +
∞∑
l=0

(
−(l + 1)C1

bl+2

)
Pl(cos θ)
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These quantities are equal. Comparing like terms for l = 1 gives,

εr

[
A1 −

2B1

b3

]
= −Eo −

2C1

b3

εr

[
A1 −

2

b3

(
− A1a

3
)]

= −Eo −
2

b3

[
A1(b

3 − a3) + Eob
3
]

...more algebra...

A1 =
−3Eo

εr

(
1 + 2a3

b3

)
+ 2(b3−a3)

b3

For the l 6= 1 terms,

lAlb
l−1 − (l + 1)Bl

bl+2
= −(l + 1)Cl

bl+2

lAlb
l−1 − (l + 1)

bl+2

(
−Ala

2l+1
)

=
−(l + 1)

bl+2
Al

[
b2l+1 − a2l+1

]
Factor out Al from both sides. It seems like we are getting nowhere because now our ex-
pression has no way of solving for Al. It turns out that we will still get valuable information
from the outcome.

lbl−1 +
(l + 1)a2l+1

bl+2
=

−(l + 1)

bl+2

[
b2l+1 − a2l+1

]
=

−(l + 1)b2l+1

bl+2
+

(l + 1)a2l+1

bl+2

lbl−1 =
−(l + 1)b2l+1

bl+2

lb2l+1 = −(l + 1)b2l+1

l = −(l + 1)

l = −1

2

This means that for l = −1
2

the A1/2 can have any value. Our general solution for the
potential requires that l has a range of values, all of which are whole, positive numbers.
The only time this equation is satisfied occurs for the trivial solution Al = 0. The other
constants are proportional to Al so we may say,

For l 6= 1 Al = Bl = Cl = 0
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The potential within the dielectric has only the l = 1 term.

Vdi(r, θ) =

(
A1r +

B1

r2

)
P1(cos θ)

= A1

(
r − a3

r2

)
P1(cos θ) substituting for B1

The electric field is the negative gradient of the potential. In spherical coordinates this
gives us a final answer,

~Edi = −A1
~∇

[
r − a3

r2

]
P1(cos θ)

= −A1

[
r̂P1(cos θ)

(
1 +

2a3

r3

)
+ θ̂

1

r

(
r − a3

r2

)
(− sin θ)

]
where A1 has been written out above.

[4.] Problem 4.26 from Griffiths

A spherical conductor has radius a and a charge Q. It is surrounded by a dielectric material
of susceptibility χe and total radius b. Use Eq. 4.58 to find the energy of this configuration.

W =
1

2

∫
~D · ~E dτ Eq. 4.58

Find ~D first since it only depends on the free charge and we know that since the sphere is
a conductor the free charge Q must reside on its surface.

~D =

{
0 for 0 ≤ r ≤ a

Q
4πr2 r̂ for a ≤ r ≤ ∞

The electric field is found from,

~E =
~D

εo(1 + χe)

and this depends on the presence of dielectrics due to the χe term.

~E =



0 for 0 ≤ r ≤ a

Q
4πεo(1+χe)r2 r̂ for a ≤ r ≤ b

Q
4πεor2 r̂ for b ≤ r ≤ ∞

Now the energy may be found from the integration for each region of differing ~D and ~E
values. These integrals are over all space, but since the integrands have no θ or φ depen-
dence I have factored out a 4π and written the remaining integrals over r only. Remember
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that dτ = r2 sin θdrdθdφ.

W =
1

2
(4π)

[∫ a

0

0 · 0 r2dr +

∫ b

a

Qr̂

4πr2
· Qr̂

4πεo(1 + χe)r2
r2dr +

∫ ∞

b

Qr̂

4πr2
· Qr̂

4πεor2
r2dr

]

= 2π
Q2

16πεo

[∫ b

a

dr

(1 + χe)r2
+

∫ ∞

b

dr

r2

]

=
Q2

8πεo

[
1

1 + χe

(
−1

r

∣∣∣∣b
a

+

(
−1

r

∣∣∣∣∞
b

]

=
Q2

8πεo

[
1

(1 + χe)a
− 1

(1 + χe)b
+

1

b

]

=
Q2

8πεo(1 + χe)

[
1

a
+

χe

b

]
[5.] Problem 4.28 from Griffiths

Reference figure 4.32 in Griffiths. A cylindrical capacitor (inner radius a and outer radius b)
is placed in a tank of dielectric oil. The oil has a susceptibility of χe and a mass density ρ. If
the potential of the inner cylinder is held constant at V and the outer cylinder is grounded,
then to what height, h, will the oil rise within in the cylinders?

This problem will be solved by finding the force of the capacitor fields on the oil and com-
paring them to the gravitational force on the liquid. These forces will be equal when the
oil reaches its equilibrium height in the capacitor. The force on the oil due to the capacitor
fields is,

F = −dW

dx
= −V 2

2

dC

dx

The sign of the force does not matter for this problem because we are going to equate the
forces to find the equilibrium position. Also, it is h that is our variable instead of the generic
variable x. The force on the oil due to the fields is,

F =
V 2

2

dC

dh

The magnitude of the force on the oil due to gravity is the mass of the oil multiplied by the
acceleration due to gravity (g).

Fgrav = mg = ρπ(b2 − a2)hg

The next step is to determine the capacitance of the system in terms of h. Earlier in the
quarter we found the capacitance of an ideal cylindrical capacitor to be,

Ccyl =
2πεol

ln b
a
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where l is the total length of the cylinders.

Consider this to be a system of two capacitors (not as a circuit, but simply deal with the
oil region and the air region separately). The potential within the capacitor region where
there is no oil is given by,

Vair =
Qair

Cair

=
Qair ln

(
b
a

)
2πεol

=
σair ln

(
b
a

)
2πεo

where σair is the charge density on the cylinders.

For the oil region, and by similar argument,

Voil =
Qoil

Coil

=
Qoil ln

(
b
a

)
2πεol

=
σoil ln

(
b
a

)
2πε

Our goal at this point is to write the capacitance of this system in terms of h. Then we
will be able to treat this as a force balance problem and compare the force of gravity on
the oil with the force of the capacitor on the oil. I have written the charge densities as
σ because the actual charge they represent is spread across the surface of their respective
cylinder. The values are still in units of charge of per unit length, as is common procedure
for dealing with cylindrical capacitors. Knowing the potential between the cylinders is
constant we want to find the total capacitance from,

C =
Qtot

V

This requires finding Qtot. We have already described the charge densities of this problem
and may now use them to find Qtot.

Qtot = σoilh + σair(l − h)

We need to relate the charge densities in order to put Qtot in a useable form.

The problem states that these potentials are equal, they are both V . This allows us to relate
the charge densities,

σair ln
(

b
a

)
2πεo

=
σoil ln

(
b
a

)
2πε

σair

εo

=
σoil

ε

σoil = εrσair
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Now rewrite Qtot,

Qtot = h(εrσair − σair) + lσair

= σair(h(εr − 1) + l)

= σair(hχe + l)

Since the potential is the same in each region we can use either value for calculating C. I
wrote the total charge in terms σair above so I will use that value here.

C =
Qtot

V
=

σair(hχe + l)
σair ln b

a

2πεo

=
2πεo(hχe + l)

ln b
a

The magnitude of the force on the oil due to the capacitor fields is given by,

F =
V 2

2

dC

dh
=

V 2

2

d

dh

[
2πεo(hχe + l)

ln b
a

]

=
V 2πεoχe

ln b
a

Equate the forces and solve for h,

Fgrav = F

ρπ(b2 − a2)hg =
V 2πεoχe

ln b
a

h =
εoχeV

2

ρ(b2 − a2)g ln b
a

[6.] Problem 4.32 from Griffiths

A point charge q is placed at the center of a dielectric sphere. The sphere has susceptibility
χe and radius R. Find the electric field, polarization, and bound charge densities. What is
the total bound charge on the surface of the sphere? Where is the compensating negative
bound charge?

(a) Electric Field

Find ~D first,
~D =

q

4πr2
r̂ = εo(1 + χe) ~E
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Again the electric field is different inside the dielectric than outside.

~E =


q

4πεo(1+χe)r2 r̂ 0 < r ≤ R

q
4πεor2 r̂ R ≤ r ≤ ∞

(b) Polarization

~P = εoχe
~E

~P =


χeq

4π(1+χe)r2 r̂ 0 < r ≤ R

0 R ≤ r

(c) Bound Charge

At the surface R = r,

σb = ~P · n̂ =
χeq

4π(1 + χe)r2
r̂ · r̂

=
χeq

4π(1 + χe)R2

To determine what happened to the negative bound surface (it must exist to cancel the
surface charge we just computed in order that the dielectric remain charge neutral) we
will look at the bound volume charge.

ρb = −~∇ · ~P = −~∇ · χeq

4π(1 + χe)r2
r̂

= − χeq

4π(1 + χe)
~∇ · r̂

r2

= − χeq

1 + χe

δ3(~r)

This made use of,
~∇ · r̂

r2
= 4πδ3(~r) Eq. 1.99

The delta function in the expression for the volume bound charge indicated that there
must exist an additional bound surface charge at the position ~r = 0. We can explain
this as a consequence of the point-like nature of the charge q at the center. It attracts
a −q charge buildup near it, but since it has no dimensions (the definition of “point-
like”) there is no real surface to spread this bound charge along.

[7.] Problem 4.33 from Griffiths

Reference figure 4.34 in Griffiths. Electric fields bend as they cross interfaces of different
dielectrics. Assuming there is no free charge at the boundary show that,

tan θ2

tan θ1

=
ε2

ε1

Eq. 4.68
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In addition, consider a dielectric lens. Would a convex lens made of dielectric material tend
to focus or defocus the electric field?

Electric fields behave according to well established boundary conditions across material
interfaces. The parallel components of ~E are given simply,

E‖,1 = E‖,2 Eq. 4.29, originally Eq. 2.32

The perpendicular components follow a slightly more complicated relation,

ε1E⊥,1 − ε2E⊥,2 = σf

This problem sets σf = 0 so the previous expression simplifies,

ε1E⊥,1 = ε2E⊥,2

Next we rewrite the electric fields of the problem as parallel and perpendicular compo-
nents.

E‖,1 = E1 sin θ1 E‖,2 = E2 sin θ2

E⊥,1 = E1 cos θ1 E⊥,2 = E2 cos θ2

The tangents of each angle are then given by,

E‖,1
E⊥,1

=
E1 sin θ1

E1 cos θ1

= tan θ1

E‖,2
E⊥,2

=
E2 sin θ2

E2 cos θ2

= tan θ2

Now solve for the ratio of tan θ terms.
tan θ2

tan θ1

=
E‖,2
E⊥,2

· E⊥,1

E‖,1

=
E⊥,1

E⊥,2

since the parallel components are equal

=
ε2
ε1

E⊥,2

E⊥,2

=
ε2

ε1

Refer back to figure 4.34 for the lens question. If this setup represents a lens we can say
that region 1 is air and region 2 is the lens. Now we know that ε1 = εo and that ε2 > εo.
The ratio of tangents will be greater than 1, meaning that the electric field in region 2 has
a proportionally larger parallel component. This larger parallel component means that
the electric field is being bent away from the normal (the normal is the line we use to
measure the angle θ). Since the electric field is being bent away from the normal this lens
is defocusing the field lines.
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